Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Pathog ; 18(2): e1010282, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1753213

RESUMEN

Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development. Trial registration: ClinicalTrials.gov NCT01994525.


Asunto(s)
Inmunidad , Inflamación , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Esporozoítos/inmunología , Adulto , Animales , Anopheles/parasitología , Femenino , Humanos , Inmunización/métodos , Mordeduras y Picaduras de Insectos/inmunología , Malaria Falciparum/parasitología , Masculino , Mosquitos Vectores/parasitología , Linfocitos T/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología
2.
Malar J ; 20(1): 284, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1286028

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.


Asunto(s)
Anopheles/parasitología , Proteínas de Insectos/genética , Plasmodium falciparum/fisiología , Interferencia de ARN , Animales , Anopheles/genética , Femenino , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/metabolismo , Glándulas Salivales/parasitología , Esporozoítos/fisiología
3.
Bull Math Biol ; 82(4): 47, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: covidwho-30620

RESUMEN

People infected with malaria may receive less mosquito bites when they are treated in well-equipped hospitals or follow doctors' advice for reducing exposure to mosquitoes at home. This quarantine-like intervention measure is especially feasible in countries and areas approaching malaria elimination. Motivated by mathematical models with quarantine for directly transmitted diseases, we develop a mosquito-borne disease model where imperfect quarantine is considered to mitigate the disease transmission from infected humans to susceptible mosquitoes. The basic reproduction number [Formula: see text] is computed and the model equilibria and their stabilities are analyzed when the incidence rate is standard or bilinear. In particular, the model system may undergo a subcritical (backward) bifurcation at [Formula: see text] when standard incidence is adopted, whereas the disease-free equilibrium is globally asymptotically stable as [Formula: see text] and the unique endemic equilibrium is locally asymptotically stable as [Formula: see text] when the infection incidence is bilinear. Numerical simulations suggest that the quarantine strategy can play an important role in decreasing malaria transmission. The success of quarantine mainly relies on the reduction of bites on quarantined individuals.


Asunto(s)
Malaria/transmisión , Modelos Biológicos , Cuarentena , Animales , Anopheles/parasitología , Número Básico de Reproducción/estadística & datos numéricos , Simulación por Computador , Interacciones Huésped-Parásitos , Humanos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Conceptos Matemáticos , Mosquitos Vectores/parasitología , Cuarentena/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA